Microchip dsPIC33EP32MC204 Bedienungsanleitung

Microchip Nicht kategorisiert dsPIC33EP32MC204

Lesen Sie kostenlos die 📖 deutsche Bedienungsanleitung für Microchip dsPIC33EP32MC204 (130 Seiten) in der Kategorie Nicht kategorisiert. Dieser Bedienungsanleitung war für 10 Personen hilfreich und wurde von 2 Benutzern mit durchschnittlich 4.5 Sternen bewertet

Seite 1/130
© 2010-2011 Microchip Technology Inc. DS70645C-page 14-1
High-Speed PWM
14
Section 14. High-Speed PWM
HIGHLIGHTS
This section of the manual contains the following major topics:
14.1 Introduction .................................................................................................................. 14-2
14.2 Features....................................................................................................................... 14-2
14.3 Control Registers ......................................................................................................... 14-3
14.4 Architecture Overview................................................................................................ 14-24
14.5 Module Description .................................................................................................... 14-27
14.6 PWM Operating Modes.............................................................................................. 14-33
14.7 PWM Generator......................................................................................................... 14-71
14.8 PWM Trigger.............................................................................................................. 14-87
14.9 PWM Interrupts.......................................................................................................... 14-98
14.10 PWM Fault Pins ......................................................................................................... 14-99
14.11 Special Features ...................................................................................................... 14-105
14.12 PWM Output Pin Control...........................................................................................14-111
14.13 Immediate Update of PWM Duty Cycle ................................................................... 14-113
14.14 Power-Saving Modes............................................................................................... 14-114
14.15 External Control of Individual Time Base(s)............................................................. 14-114
14.16 Application Information ............................................................................................ 14-115
14.17 Register Map............................................................................................................ 14-126
14.18 Related Application Notes........................................................................................ 14-127
14.19 Revision History ....................................................................................................... 14-128
dsPIC33E/PIC24E Family Reference Manual
DS70645C-page 14-2 © 2010-2011 Microchip Technology Inc.
14.1 INTRODUCTION
This section describes the High-Speed Pulse-Width Modulator (PWM) module and its
associated operational modes. The High-Speed PWM module in the dsPIC33E/PIC24E
device family supports a wide variety of PWM modes and is ideal for power
conversion/motor control applications. Some of the common applications include:
AC-to-DC converters
DC-to-DC converters
AC and DC motors: BLDC, PMSM, ACIM, SRM, etc.
• Inverters
Battery chargers
Digital lighting
Uninterrupted Power Supply (UPS)
Power Factor Correction (PFC) (e.g., Interleaved PFC and Bridgeless PFC)
14.2 FEATURES
The High-Speed PWM module consists of the following major features:
Up to seven PWM generators, each with an individual time base
Two PWM outputs per PWM generator
Individual period and duty cycle for each PWM output
Duty cycle, dead time, phase shift and frequency resolution equal to the system clock
source (TOSC)
Independent fault and current-limit inputs for up to 14 PWM outputs
Redundant Output mode
Independent Output mode (this feature is not available on all devices)
Push-Pull Output mode
Complementary Output mode
Center-Aligned PWM mode
Output override control
Special Event Trigger
PWM capture feature
Prescaler for input clock
ADC triggering with PWM
Independent PWM frequency, duty cycle and phase shift changes
Leading-Edge Blanking (LEB) functionality
Dead time compensation
Output clock chopping
Note: This family reference manual section is meant to serve as a complement to device
data sheets. Depending on the device variant, this manual section may not apply to
all dsPIC33E/PIC24E devices.
Please consult the note at the beginning of the “High-Speed PWM” chapter in the
current device data sheet to check whether this document supports the device you
are using.
Device data sheets and family reference manual sections are available for
download from the Microchip Worldwide Web site at: http://www.microchip.com
© 2010-2011 Microchip Technology Inc. DS70645C-page 14-3
Section 14. High-Speed PWM
High-Speed PWM
14
14.3 CONTROL REGISTERS
The following registers control the operation of the High-Speed PWM module:
PTCON: PWM Time Base Control Register
- Enables or disables the High-Speed PWM module
- Sets the Special Event Trigger for the ADC
- Enables or disables immediate period updates
- Selects the synchronizing source for the master time base
- Specifies synchronization settings
PTCON2: PWM Clock Divider Select Register 2
Provides the clock prescaler to the PWM master time base
PTPER: Primary Master Time Base Period Register
Provides the PWM time period value
STCON: PWM Secondary Master Time Base Control Registe (1)
- Enables or disables immediate period updates based on the secondary master time base
- Selects the synchronization source for the secondary master time base
- Specifies the synchronization setting for secondary master time base control
STCON2: PWM Secondary Clock Divider Select Register 2(1)
Provides the clock prescaler to the PWM secondary master time base
STPER: Secondary Master Time Base Period Register(1)
Provides the secondary master time base period value
MDC: PWM Master Duty Cycle Register
Provides the PWM master duty cycle value
SEVTCMP: PWM Special Event Compare Register
Provides the compare value that is used to trigger the ADC module
SSEVTCMP: PWM Secondary Special Event Compare Register(1)
Provides the compare value that is used to trigger the ADC module based on the
secondary master time base
CHOP: PWM Chop Clock Generator Register
- Provides the chop clock frequency
- Enables or disables the chop clock generator
PWMKEY: PWM Unlock Register(1)
Writes the unlock sequence to allow writes to the IOCONx and FCLCONx registers
PWMCONx: PWM Control Register
- Enables or disables fault interrupt, current-limit interrupt and primary trigger interrupt
- Provides the interrupt status for fault interrupt, current-limit interrupt and primary trigger
interrupt
- Selects the type of time base (master time base or independent time base)
- Selects the type of duty cycle (master duty cycle or independent duty cycle)
- Controls Dead Time mode
- Enables or disables Center-Aligned mode
- Controls the external PWM Reset operation
- Enables or disables immediate updates of the duty cycle, phase offset, independent time
base period
IOCONx: PWM I/O Control Register
- Enables or disables PWM pin control feature (PWM control or GPIO)
- Controls fault/current limit override values
- Enables PWMxH and PWMxL pin swapping
- Controls the PWMxH and PWMxL output polarity
- Controls the PWMxH and PWMxL output if any of the following modes is selected:
Complementary mode
Push-Pull mode
True Independent mode
Note: Not all registers are available on all devices. Refer to the “High-Speed PWM”
chapter in the specific device data sheet for availability.
dsPIC33E/PIC24E Family Reference Manual
DS70645C-page 14-4 © 2010-2011 Microchip Technology Inc.
FCLCONx: PWM Fault Current-Limit Control Register
- Selects the current-limit control signal source
- Selects the current-limit polarity
- Enables or disables Current-Limit mode
- Selects the fault control signal source
- Configures the fault polarity
- Enables or disables Fault mode
PDCx: PWM Generator Duty Cycle Register(1)
- Provides the duty cycle value for the PWMxH and PWMxL outputs, if master time base is
selected
- Provides the duty cycle value for the PWMxH output, if independent time base is selected
PHASEx: PWM Primary Phase Shift Register
- Provides the phase shift value for the PWMxH and PWMxL output, if master time base is
selected
- Provides the independent time base period for the PWMxH output, if independent time
base is selected
SDCx: PWM Secondary Duty Cycle Register(1,2)
Provides the duty cycle value for the PWMxL output, if independent time base is selected
SPHASEx: PWM Secondary Phase Shift Register(1,2,3)
- Provides the phase shift for the PWMxL output, if the master time base is selected
- Provides the independent time base period value for the PWMxL output, if the independent
time base is selected
DTRx: PWM Dead Time Register
- Provides the dead time value for the PWMxH output, if positive dead time is selected
- Provides the dead time value for the PWMxL output, if negative dead time is selected
ALTDTRx: PWM Alternate Dead Time Register
- Provides the dead time value for the PWMxL output, if positive dead time is selected
- Provides the dead time value for the PWMxH output, if negative dead time is selected
TRIGx: PWM Primary Trigger Compare Value Register
Provides the compare value to generate the primary PWM trigger
TRGCONx: PWM Trigger Control Register
- Enables the PWMx trigger postscaler start event
- Specifies the number of PWM cycles to skip before generating the first trigger
LEBCONx: Leading-Edge Blanking Control Register
- Selects the rising or falling edge of the PWM output for LEB
- Enables or disables LEB for fault and current-limit inputs
LEBDLYx: Leading-Edge Blanking Delay Register
Provides leading-edge blanking delay for the fault and current-limit inputs
PWMCAPx: Primary PWM Time Base Capture Register
Provides the captured independent time base value when a leading edge is detected on
the current-limit input, and when LEB processing on the current-limit input signal is
completed
AUXCONx: PWM Auxiliary Control Register
- Selects PWM state blank and chop clock sources
- Selects PWMxH and PWMxL output chopping functionality
dsPIC33E/PIC24E Family Reference Manual
DS70645C-page 14-6 © 2010-2011 Microchip Technology Inc.
Register 14-2: PTCON2: PWM Clock Divider Select Register 2
U-0 U-0 U-0 U-0 U-0 U-0 U-0 U-0
— —
bit 15 bit 8
U-0 U-0 U-0 U-0 U-0 R/W-0 R/W-0 R/W-0
— — PCLKDIV<2:0>(1)
bit 7 bit 0
Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
-n = Value at POR 1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown
bit 15-3 Unimplemented: Read as ‘0
bit 2-0 PCLKDIV<2:0>: PWM Input Clock Prescaler (Divider) Select bits(1)
111 = Reserved
110 = Divide by 64
101 = Divide by 32
100 = Divide by 16
011 = Divide by 8
010 = Divide by 4
001 = Divide by 2
000 = Divide by 1, maximum PWM timing resolution (power-on default)
Note 1: These bits should be changed only when PTEN = 0. Changing the clock selection during operation will
yield unpredictable results.
Register 14-3: PTPER: Primary Master Time Base Period Register
R/W-1 R/W-1 R/W-1 R/W-1 R/W-1 R/W-1 R/W-1 R/W-1
PTPER<15:8>(1)
bit 15 bit 8
R/W-1 R/W-1 R/W-1 R/W-1 R/W-1 R/W-0 R/W-0 R/W-0
PTPER<7:0>(1)
bit 7 bit 0
Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
-n = Value at POR 1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown
bit 15-0 PTPER<15:0>: Primary Master Time Base (PMTMR) Period Value bits(1)
Note 1: 1 LSb = 1 Tosc. For example, 7.14 ns for 70 MIPS operation.
© 2010-2011 Microchip Technology Inc. DS70645C-page 14-7
Section 14. High-Speed PWM
High-Speed PWM
14
Register 14-4: STCON: PWM Secondary Master Time Base Control Registe (1)
U-0 U-0 U-0 HS/HC-0 R/W-0 R/W-0 R/W-0 R/W-0
SESTAT SEIEN EIPU(2) SYNCPOL SYNCOEN
bit 15 bit 8
R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0
SYNCEN SYNCSRC<2:0> SEVTPS<3:0>
bit 7 bit 0
Legend: HC = Cleared in Hardware HS = Set in Hardware
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown
bit 15-13 Unimplemented: Read as 0
bit 12 SESTAT: Special Event Interrupt Status bit
1 = Secondary Special Event Interrupt is pending
0 = Secondary Special Event Interrupt is not pending
bit 11 SEIEN: Special Event Interrupt Enable bit
1 = Secondary Special Event Interrupt is enabled
0 = Secondary Special Event Interrupt is disabled
bit 10 EIPU: Enable Immediate Period Updates bit(2)
1 = Active Secondary Period register is updated immediately
0 = Active Secondary Period register updates occur on PWM cycle boundaries
bit 9 SYNCPOL: Synchronize Input and Output Polarity bit
1 = SYNCO2 output is active-low
0 = SYNCO2 output is active-high
bit 8 SYNCOEN: Secondary Master Time Base Sync Enable bit
1 = SYNCO2 output is enabled
0 = SYNCO2 output is disabled
bit 7 SYNCEN: External Secondary Master Time Base Synchronization Enable bit
1 = External synchronization of secondary time base is enabled
0 = External synchronization of secondary time base is disabled
bit 6-4 SYNCSRC<2:0>: Secondary Time Base Sync Source Selection bits
These bits select the SYNCIx or PTGOx input as the synchronous source. Refer to the “High-Speed
PWM” chapter in the specific device data sheet for availability.
bit 3-0 SEVTPS<3:0>: PWM Secondary Special Event Trigger Output Postscaler Select bits
1111 = 1:16 Postscale
0001 = 1:2 Postscale
0000 = 1:1 Postscale
Note 1: This register is not available on all devices. Refer to the “High-Speed PWM” chapter of the specific
device data sheet for availability.
2: This bit only applies to the secondary master time base period.
dsPIC33E/PIC24E Family Reference Manual
DS70645C-page 14-8 © 2010-2011 Microchip Technology Inc.
Register 14-5: STCON2: PWM Secondary Clock Divider Select Register 2
(1)
U-0 U-0 U-0 U-0 U-0 U-0 U-0 U-0
— —
bit 15 bit 8
U-0 U-0 U-0 U-0 U-0 R/W-0 R/W-0 R/W-0
— — PCLKDIV<2:0>(2)
bit 7 bit 0
Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown
bit 15-3 Unimplemented: Read as ‘0
bit 2-0 PCLKDIV<2:0>: PWM Input Clock Prescaler (Divider) Select bits(2)
111 = Reserved
110 = Divide by 64
101 = Divide by 32
100 = Divide by 16
011 = Divide by 8
010 = Divide by 4
001 = Divide by 2
000 = Divide by 1, maximum PWM timing resolution (power-on default)
Note 1: This register is not available on all devices. Refer to the “High-Speed PWM” chapter of the specific
device data sheet for availability.
2: These bits should be changed only when PTEN = 0. Changing the clock selection during operation will
yield unpredictable results.
© 2010-2011 Microchip Technology Inc. DS70645C-page 14-9
Section 14. High-Speed PWM
High-Speed PWM
14
Register 14-6: STPER: Secondary Master Time Base Period Register
(1)
R/W-1 R/W-1 R/W-1 R/W-1 R/W-1 R/W-1 R/W-1 R/W-1
STPER<15:8>
bit 15 bit 8
R/W-1 R/W-1 R/W-1 R/W-1 R/W-1 R/W-1 R/W-1 R/W-1
STPER<7:0>
bit 7 bit 0
Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown
bit 15-0 STPER<15:0>: Secondary Master Time Base Period Value bits
Note 1: This register is not available on all devices. Refer to the “High-Speed PWM” chapter of the specific
device data sheet for availability.
Register 14-7: MDC: PWM Master Duty Cycle Register
R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0
MDC<15:8>
bit 15 bit 8
R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0
MDC<7:0>
bit 7 bit 0
Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown
bit 15-0 MDC<15:0>: Master PWM Duty Cycle Value bits
Register 14-8: SEVTCMP: PWM Special Event Compare Register
R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0
SEVTCMP<15:8>
bit 15 bit 8
R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0
SEVTCMP<7:0>
bit 7 bit 0
Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown
bit 15-0 SEVTCMP<15:0>: Special Event Compare Count Value bits
dsPIC33E/PIC24E Family Reference Manual
DS70645C-page 14-10 © 2010-2011 Microchip Technology Inc.
Register 14-9: SSEVTCMP: PWM Secondary Special Event Compare Register
(1)
R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0
SSEVTCMP<15:8>
bit 15 bit 8
R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0
SSEVTCMP<7:0>
bit 7 bit 0
Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown
bit 15-0 SSEVTCMP<15:0>: Secondary Special Event Compare Count Value bits
The optional SSEVTCMP register and the optional secondary master time base provide an additional
Special Event Trigger. The secondary special event trigger also has its own postscaler controlled by
the SEVTPS<3:0> bits in the STCON register.
Note 1: This register is not available on all devices. Refer to the “High-Speed PWM” chapter of the specific
device data sheet for availability.
Register 14-10: CHOP: PWM Chop Clock Generator Register
R/W-0 U-0 U-0 U-0 U-0 U-0 R/W-0 R/W-0
CHPCLKEN — CHOPCLK<9:8>
bit 15 bit 8
R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0
CHOPCLK<7:0>
bit 7 bit 0
Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown
bit 15 CHPCLKEN: Enable Chop Clock Generator bit
1 = Chop clock generator is enabled
0 = Chop clock generator is disabled
bit 14-10 Unimplemented: Read as ‘0
bit 9-0 CHOPCLK<9:0>: Chop Clock Divider bits
Chop Frequency = (FP/PLKDIV) / (CHOPCLK<9:0> + 1)
As an example, for devices running at 60 MIPS, a value of all zeros will yield a 60 MHz chop clock
(period = 16.7 ns) with the PWM clock prescaler configured for fastest clock. A value of 0000000001
in the CHOPCLK<9:0> bits will yield a 30 MHz chop clock with the PWM clock prescaler configured
for fastest clock.
Note: The chop clock generator operates with the Primary PWM Clock Prescaler bits (PCLKDIV<2:0>) in the
PTCON2 register.
© 2010-2011 Microchip Technology Inc. DS70645C-page 14-11
Section 14. High-Speed PWM
High-Speed PWM
14
Register 14-11: PWMKEY: PWM Unlock Register(1)
R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0
PWMKEY<15:8>
bit 15 bit 8
R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0
PWMKEY<7:0>
bit 7 bit 0
Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown
bit 15-0 PWMKEY<15:0>: PWM Unlock bits
If the PWMLOCK Configuration bit is asserted (PWMLOCK = 1), the IOCONx and FCLCONx registers
are writable only after the proper sequence is written to the PWMKEY register. If the PWMLOCK
Configuration bit is deasserted (PWMLOCK = 0), the IOCONx and FCLCONx registers are writable at
all times. Refer to 14.5.3 “Write Protection” for further details of the unlock sequence.
Note 1: This register is implemented only in devices where the PWMLOCK Configuration bit is present in the
FOSCSEL Configuration register.
dsPIC33E/PIC24E Family Reference Manual
DS70645C-page 14-12 © 2010-2011 Microchip Technology Inc.
Register 14-12: PWMCONx: PWM Control Register
HS/HC-0 HS/HC-0 HS/HC-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0
FLTSTAT(1) CLSTAT(1) TRGSTAT FLTIEN CLIEN TRGIEN ITB(3) MDCS(3)
bit 15 bit 8
R/W-0 R/W-0 R/W-0 U-0 R/W-0 R/W-0 R/W-0 R/W-0
DTC<1:0> DTCP(5) MTBS CAM(2,3) XPRES(4) IUE(3)
bit 7 bit 0
Legend: HC = Cleared in Hardware HS = Set in Hardware
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown
bit 15 FLTSTAT: Fault Interrupt Status bit(1)
1 = Fault interrupt is pending
0 = No fault interrupt is pending
This bit is cleared by setting FLTIEN = 0.
bit 14 CLSTAT: Current-Limit Interrupt Status bit(1)
1 = Current-limit interrupt is pending
0 = No current-limit interrupt is pending
This bit is cleared by setting CLIEN = 0.
bit 13 TRGSTAT: Trigger Interrupt Status bit
1 = Trigger interrupt is pending
0 = No trigger interrupt is pending
This bit is cleared by setting TRGIEN = 0.
bit 12 FLTIEN: Fault Interrupt Enable bit
1 = Fault interrupt is enabled
0 = Fault interrupt is disabled and the FLTSTAT bit is cleared
bit 11 CLIEN: Current-Limit Interrupt Enable bit
1 = Current-limit interrupt enabled
0 = Current-limit interrupt disabled and the CLSTAT bit is cleared
bit 10 TRGIEN: Trigger Interrupt Enable bit
1 = A trigger event generates an interrupt request
0 = Trigger event interrupts are disabled and the TRGSTAT bit is cleared
bit 9 ITB: Independent Time Base Mode bit
(3)
1 = PHASEx/SPHASEx registers provide time base period for this PWM generator
0 = PTPER register provides timing for this PWM generator
bit 8 Master Duty Cycle MDCS: Register Select bit(3)
1 = MDC register provides duty cycle information for this PWM generator
0 = PDCx and SDCx registers provide duty cycle information for this PWM generator
Note 1: Software must clear the interrupt status here, and in the corresponding IFS bit in the Interrupt Controller.
2: The Independent Time Base mode (ITB = 1 0) must be enabled to use Center-Aligned mode. If ITB = , the
CAM bit is ignored.
3: These bits should not be changed after the PWM is enabled (PTEN = 1).
4: To operate in External Period Reset mode, the ITB bit must be set to ‘ ’ and the CLMOD bit in the 1
FCLCONx register must be set to ‘0’.
5: For DTCP to be effective, DTC<1:0> must be set to ‘11’; otherwise, DTCP is ignored.
6: Negative dead time is only implemented for Edge-Aligned mode (CAM = 0).
© 2010-2011 Microchip Technology Inc. DS70645C-page 14-13
Section 14. High-Speed PWM
High-Speed PWM
14
bit 7-6 DTC<1:0>: Dead Time Control bits
11 = Dead Time Compensation mode enabled
10 = Dead time function is disabled
01 = Negative dead time actively applied for Complementary Output mode(6)
00 = Positive dead time actively applied for all output modes
bit 5 DTCP: Dead Time Compensation Polarity bit(5)
1 = If DTCMPx pin = 0, PWMxL is shortened, and PWMxH is lengthened
If DTCMPx pin = 1, PWMxH is shortened, and PWMxL is lengthened
0 = If DTCMPx pin = 0, PWMxH is shortened, and PWMxL is lengthened
If DTCMPx pin = 1, PWMxL is shortened, and PWMxH is lengthened
bit 4 Unimplemented: Read as ‘0
bit 3 MTBS: Master Time Base Select bit
1 = PWM generator uses the secondary master time base for synchronization and the clock source
for the PWM generation logic (if secondary time base is available)
0 = PWM generator uses the primary master time base for synchronization and the clock source for
the PWM generation logic
bit 2 CAM: Center-Aligned Mode Enable bit(2,3)
1 = Center-Aligned mode is enabled
0 = Edge-Aligned mode is enabled
bit 1 External PWM Reset Control bitXPRES: (4)
1 = Current-limit source resets primary local time base for this PWM generator if it is in Independent
Time Base mode
0 = External pins do not affect PWM time base
bit 0 IUE: Immediate Update Enable bit(3)
1 = Updates to the active MDC/PDCx/SDCx/DTRx/ALTDTRx/PHASEx/SPHASEx registers are
immediate
0 = Updates to the active MDC/PDCx/SDCx/DTRx/ALTDTRx/PHASEx/SPHASEx registers are
synchronized to the PWM time base
Register 14-12: PWMCONx: PWM Control Register (Continued)
Note 1: Software must clear the interrupt status here, and in the corresponding IFS bit in the Interrupt Controller.
2: The Independent Time Base mode (ITB = 1 0) must be enabled to use Center-Aligned mode. If ITB = , the
CAM bit is ignored.
3: These bits should not be changed after the PWM is enabled (PTEN = 1).
4: To operate in External Period Reset mode, the ITB bit must be set to ‘ ’ and the CLMOD bit in the 1
FCLCONx register must be set to0’.
5: For DTCP to be effective, DTC<1:0> must be set to ‘11’; otherwise, DTCP is ignored.
6: Negative dead time is only implemented for Edge-Aligned mode (CAM = 0).
dsPIC33E/PIC24E Family Reference Manual
DS70645C-page 14-14 © 2010-2011 Microchip Technology Inc.
Register 14-13: IOCONx: PWM I/O Control Register
R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0
PENH PENL POLH POLL PMOD<1:0> OVRENH OVRENL
bit 15 bit 8
R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0
OVRDAT<1:0> FLTDAT<1:0>(1,2) CLDAT<1:0> SWAP OSYNC
bit 7 bit 0
Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown
bit 15 PENH: PWMxH Output Pin Ownership bit
1 = PWM module controls PWMxH pin
0 = GPIO module controls PWMxH pin
bit 14 PENL: PWMxL Output Pin Ownership bit
1 = PWM module controls PWMxL pin
0 = GPIO module controls PWMxL pin
bit 13 POLH: PWMxH Output Pin Polarity bit
1 = PWMxH pin is active-low
0 = PWMxH pin is active-high
bit 12 POLL: PWMxL Output Pin Polarity bit
1 = PWMxL pin is active-low
0 = PWMxL pin is active-high
bit 11-10 PMOD<1:0>: PWM # I/O Pin Mode bits
11 = PWM I/O pin pair is in True Independent PWM Output mode
(3)
10 = PWM I/O pin pair is in Push-Pull Output mode
01 = PWM I/O pin pair is in Redundant Output mode
00 = PWM I/O pin pair is in Complementary Output mode
bit 9 OVRENH: Override Enable for PWMxH Pin bit
1 = OVRDAT<1> provides data for output on PWMxH pin
0 = PWM generator provides data for PWMxH pin
bit 8 OVRENL: Override Enable for PWMxL Pin bit
1 = OVRDAT<0> provides data for output on PWMxL pin
0 = PWM generator provides data for PWMxL pin
bit 7-6 OVRDAT<1:0>: State(2) for PWMxH, PWMxL Pins if Override is Enabled bits
If OVERENH = 1, OVRDAT<1> provides data for PWMxH
If OVERENL = 1, OVRDAT<0> provides data for PWMxL
Note 1: These bits must not be changed after the PWM module is enabled (PTEN = 1).
2: State represents Active/Inactive state of the PWM, depending on the POLH and POLL bits. For example, if
FLTDAT<1> is set to 1’ and POLH is set to 1, the PWMxH pin will be at logic level 0 (active level) when a
fault occurs.
3: This feature is not available on all devices. Refer to the “High-Speed PWM” chapter of the specific device
data sheet for availability.
© 2010-2011 Microchip Technology Inc. DS70645C-page 14-17
Section 14. High-Speed PWM
High-Speed PWM
14
Register 14-15: PDCx: PWM Generator Duty Cycle Register(1)
R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0
PDCx<15:8>
bit 15 bit 8
R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0
PDCx<7:0>
bit 7 bit 0
Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown
bit 15-0 PDCx<15:0>: PWM Generator # Duty Cycle Value bits
Note 1: In Independent PWM mode, PMOD<1:0> (IOCONx<11:10>) = 11, the PDCx register controls the PWMxH
duty cycle only. In Complementary, Redundant and Push-Pull PWM modes (PMOD<1:0>
(IOCONx<11:0>) = 00 01, , or 10), the PDCx register controls the duty cycle of both the PWMxH and
PWMxL.
Register 14-16: PHASEx: PWM Primary Phase Shift Register
R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0
PHASEx<15:8>
bit 15 bit 8
R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0
PHASEx<7:0>
bit 7 bit 0
Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown
bit 15-0 PHASEx<15:0>: PWM Phase Shift Value or Independent Time Base Period bits for the PWM Generator
Note 1: If the ITB bit = 0 (PWMCONx<9>), the following applies based on the mode of operation:
Complementary, Redundant and Push-Pull Output mode (PMOD<1:0> (IOCONx<11:10>) = 00,
01 10, or ) PHASEx<15:0> = Phase shift value for PWMxH and PWMxL outputs
True Independent Output mode (PMOD<1:0> (IOCONx<11:10>) = 11) PHASEx<15:0> = Phase
shift value for PWMxH only
2: If the ITB bit = 1(PWMCONx<9>), the following applies based on the mode of operation:
Complementary, Redundant, and Push-Pull Output mode (PMOD<1:0> (IOCONx<11:10>) = 00,
01 10, or ) PHASEx<15:0> = Independent time base period value for PWMxH and PWMxL
True Independent Output mode (PMOD<1:0> (IOCONx<11:10>) = 11) PHASEx<15:0> = Independent
time base period for PWMxH only
dsPIC33E/PIC24E Family Reference Manual
DS70645C-page 14-18 © 2010-2011 Microchip Technology Inc.
Register 14-17: SDCx: PWM Secondary Duty Cycle Register(1,2)
R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0
SDCx<15:8>
bit 15 bit 8
R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0
SDCx<7:0>
bit 7 bit 0
Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown
bit 15-0 SDCx<15:0>: Secondary Duty Cycle bits for PWMxL output pin
Note 1: The SDCx register is used in Independent PWM mode only (PMOD<1:0> (IOCONx<11:10>) = 11. When
used in Independent PWM mode, the SDCx register controls the PWMxL duty cycle.
2: This register is not available on all devices. Refer to the “High-Speed PWM” chapter of the specific
device data sheet for availability.
Register 14-18: SPHASEx: PWM Secondary Phase Shift Register
(1,2,3)
R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0
SPHASEx<15:8>
bit 15 bit 8
R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0
SPHASEx<7:0>
bit 7 bit 0
Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown
bit 15-0 SPHASEx<15:0>: Secondary Phase Offset bits for PWMxL Output Pin
Note 1: If the ITB bit = 0 (PWMCONx<9>), the following applies based on the mode of operation:
Complementary, Redundant and Push-Pull Output mode (PMOD<1:0> (IOCONx<11:10>) = 00,
01 10, or ) SPHASEx<15:0> = Not used
True Independent Output mode (PMOD<1:0> (IOCONx<11:10>) = 11) SPHASEx<15:0> = Phase
shift value for PWMxL only
2: If the ITB bit = 1 (PWMCONx<9>), the following applies based on the mode of operation:
Complementary, Redundant and Push-Pull Output mode (PMOD<1:0> (IOCONx<11:10>) = 00,
01 10, or ) SPHASEx<15:0> = Not used
True Independent Output mode (PMOD<1:0> (IOCONx<11:10>) = 11) SPHASEx<15:0> =
Independent time base period value for PWMxL only
3: This register is not available on all devices. Refer to the “High-Speed PWM” chapter of the specific device
data sheet for availability.
dsPIC33E/PIC24E Family Reference Manual
DS70645C-page 14-20 © 2010-2011 Microchip Technology Inc.
Register 14-22: TRGCONx: PWM Trigger Control Register
R/W-0 R/W-0 R/W-0 R/W-0 U-0 U-0 U-0 U-0
TRGDIV<3:0> — —
bit 15 bit 8
U-0 U-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0
— — TRGSTRT<5:0>
bit 7 bit 0
Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown
bit 15-12 TRGDIV<3:0>: Trigger # Output Divider bits
1111 = Trigger output for every 16th trigger event
0010 = Trigger output for every 3rd trigger event
0001 = Trigger output for every 2nd trigger event
0000 = Trigger output for every trigger event
bit 11-6 Unimplemented: Read as 0
bit 5-0 TRGSTRT<5:0>: Trigger Postscaler Start Enable Select bits
111111 = Wait 63 PWM cycles before generating the first trigger event after the module is enabled
000010 = Wait 2 PWM cycles before generating the first trigger event after the module is enabled
000001 = Wait 1 PWM cycles before generating the first trigger event after the module is enabled
000000 = Wait 0 PWM cycles before generating the first trigger event after the module is enabled
© 2010-2011 Microchip Technology Inc. DS70645C-page 14-23
Section 14. High-Speed PWM
High-Speed PWM
14
Register 14-26: AUXCONx: PWM Auxiliary Control Register
U-0 U-0 U-0 U-0 R/W-0 R/W-0 R/W-0 R/W-0
— — BLANKSEL<3:0>(1)
bit 15 bit 8
U-0 U-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0
— — CHOPSEL<3:0>(1) CHOPHEN CHOPLEN
bit 7 bit 0
Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown
bit 15-12 Unimplemented: Read as ‘0
bit 11-8 BLANKSEL<3:0>: PWM State Blank Source Select bits(1)
The selected state blank signal blocks the current-limit and/or fault input signals (if enabled via the
BCH and BCL bits in the LEBCONx register).
1111 = PWMxH selected as state blank source
0001 = PWMxH selected as state blank source
0000 = No state blanking
bit 7-6 Unimplemented: Read as ‘0
bit 5-2 CHOPSEL<3:0>: PWM Chop Clock Source Select bits(1)
The selected signal will enable and disable (CHOP) the selected PWM outputs.
1111 = PWMxH selected as CHOP clock source
0001 = PWMxH selected as CHOP clock source
0000 = Chop clock generator selected as CHOP clock source
bit 1 CHOPHEN: PWMxH Output Chopping Enable bit
1 = PWMxH chopping function is enabled
0 = PWMxH chopping function is disabled
bit 0 CHOPLEN: PWMxL Output Chopping Enable bit
1 = PWMxL chopping function is enabled
0 = PWMxL chopping function is disabled
Note 1: These bit selections are device dependent. Refer to the “High-Speed PWM” chapter of the specific
device data sheet for availability.
dsPIC33E/PIC24E Family Reference Manual
DS70645C-page 14-26 © 2010-2011 Microchip Technology Inc.
Figure 14-2: High-Speed PWM Module Register Interconnection Diagram
MUX
PTMRx
PDCx
PWMCONx TRGCONx
PTCON, PTCON2
IOCONx
DTRx
PWMxL
PWMxH
FLTx
PWM1L
PWM1H
FCLCONx
MDC
PHASEx
LEBCONx
MUX
STMRx
SDCx
SPHASEx ALTDTRx
PWMCAPx
User Override Logic
Current-Limit
PWM Output Mode
Control Logic
Dead
Logic
Pin
Control
Logic
Fault and
Current-Limit
Logic
PWM Generator 1
FLTx
PWM Generator x
Interrupt
Logic
ADC Trigger
Module Control and Timing
Master Duty Cycle Register
Synchronization Synchronization
Master PeriodMaster Period
Master Duty CycleMaster Duty Cycle
Secondary PWM
SYNCI2
SYNCI1
SYNCO1
SEVTCMP
Comparator Special Event Trigger
Special Event
Postscaler
PTPER
PMTMR Primary Master Time Base
Master Time Base Counter
Special Event Compare Trigger
Comparator
Clock
Prescaler
Comparator
Comparator
Comparator
16-bit Data Bus
Time
TRIGx Fault Override Logic
Override Logic
SYNCO2
SEVTCMP
Comparator Special Event Trigger
Special Event
Postscaler
PTPER
PMTMR Secondary Master Time Base
Master Time Base Counter
Special Event Compare Trigger
Comparator
Clock
Prescaler
DTCMPx
DTCMP1
Note 1: Not all of the features and registers listed in this block diagram are available on all devices. Refer to the
“High-Speed PWM” chapter of the specific device data sheet for availability.
© 2010-2011 Microchip Technology Inc. DS70645C-page 14-27
Section 14. High-Speed PWM
High-Speed PWM
14
14.5 MODULE DESCRIPTION
14.5.1 PWM Clock Selection
The system clock is used to generate the clock for the High-Speed PWM module internally. The
maximum time resolution for this module is TOSC.
14.5.2 Time Base
Each PWM output in a PWM generator can use the master time base or an independent time
base. The input clock of the High-Speed PWM module has prescaler (divider) options of 1:1 to
1:64, which can be selected using the PWM Input Clock Prescaler (Divider) Select bits
(PCLKDIV<2:0>) in the PWM Clock Divider Select register (PTCON2<2:0>). The prescaled value
will also reflect the PWM resolution, which helps to reduce the power consumption of the
High-Speed PWM module. The prescaled clock is the input to the PWM clock control logic block.
The maximum clock rate provides a duty cycle and period resolution of TOSC.
For example:
If a prescaler option of tion can be set 1:2 is selected, the PWM duty cycle and period resolu
at TOSC * 2. Thereby, the power consumption of the High-Speed PWM module would be
reduced by approximately 50 percent of the maximum speed operation.
If a prescaler option of tion can be set 1:4 is selected, the PWM duty cycle and period resolu
at TOSC * 4. Thereby, the power consumption of the High-Speed PWM module would be
reduced by approximately 75 percent of the maximum speed operation.
The High-Speed PWM module can operate in the standard edge-aligned or center-aligned time
base.
14.5.3 Write Protection
Certain devices incorporate a write protection feature for the IOCONx and FCLCONx registers,
which prevents any inadvertent writes to these registers. This feature can be controlled by the
PWMLOCK Configuration bit (FOSCSEL<6>). The default state of the write protection feature is
enabled (PWMLOCK = 1). Refer to the “Special Features” chapter of the specific device data
sheet for more information of the Flash Configuration bytes.
To gain write access to the locked registers, the user application must write two consecutive
values of 0xABCD and 0x4321 to the PWMKEY register. The write access to the IOCONx or
FCLCONx registers must be the next SFR access following the unlock sequence; there can be
no other SFR accesses during the unlock process and subsequent write access. To write to both
the IOCONx and FCLCONx registers requires two unlock operations.
The correct unlocking sequence is described in Example 14-1.
Example 14-1: PWM Write-Protected Register Unlock Sequence
; FLT32 pin must be pulled high externally to clear and disable the fault
; Writing to FCLCON1 register requires unlock sequence
mov #0xabcd,w10 ;Load first unlock key to w10 register
mov #0x4321,w11 ;Load second unlock key to w11 register
mov #0x0000,w0 ;Load desired value of FCLCON1 register in w0
mov w10, PWMKEY ;Write first unlock key to PWMKEY register
mov w11, PWMKEY ;Write second unlock key to PWMKEY register
mov w0,FCLCON1 ;Write desired value to FCLCON1 register
; Set PWM ownership and polarity using the IOCON1 register
; Writing to IOCON1 register requires unlock sequence
mov #0xabcd,w10 ;Load first unlock key to w10 register
mov #0x4321,w11 ;Load second unlock key to w11 register
mov #0xF000,w0 ;Load desired value of IOCON1 register in w0
mov w10, PWMKEY ;Write first unlock key to PWMKEY register
mov w11, PWMKEY ;Write second unlock key to PWMKEY register
mov w0,IOCON1 ;Write desired value to IOCON1 register
© 2010-2011 Microchip Technology Inc. DS70645C-page 14-29
Section 14. High-Speed PWM
High-Speed PWM
14
Figure 14-4: Center-Aligned PWM Mode
Example 14-2: Edge-Aligned or Center-Aligned Mode Selection
PWM1H
PWM2H
0
PDC1
PDC2
PHASEx
Period
2 x Period
/* Select Edge-Aligned PWM Time Base */
PWMCON1bits.CAM = 0; /* For Edge-Aligned mode */
/* Select Center-Aligned PWM Time Base */
PWMCON1bits.CAM = 1; /* For Center-Aligned mode */
PWMCON1bits.ITB = 1; /* Must be set for Center-Aligned mode */
dsPIC33E/PIC24E Family Reference Manual
DS70645C-page 14-30 © 2010-2011 Microchip Technology Inc.
14.5.6 Master Time Base/Synchronous Time Base
Figure 14-5 illustrates the PWM functionality in the master time base.
Figure 14-5: Master Time Base Block Diagram
Some of the common tasks of the master time base are as follows:
Generates time reference for all the PWM generators
Generates special event ADC trigger and interrupt
Supports synchronization with the external SYNC signal (SYNCIx)
Supports synchronization with external devices using SYNCOx signal
The master time base for a PWM generator is set by loading a 16-bit value into the Primary
Master Time Base Period register (PTPER). In Master Time Base mode, the value in the
PHASEx and SPHASEx registers provides phase shift between the PWM outputs.
The clock for
the PWM timer (PMTMR) is derived from the system clock.
14.5.7 Time Base Synchronization
The master time base can be synchronized with the external synchronization signal via the
master time base synchronization signal (SYNCIx). The synchronization source (SYNCIx) can
be selected using the SYNCSRC<1:0> bits (PTCON<5:4>). The SYNCPOL bit (PTCON<9>)
selects the rising or falling edge of the synchronization pulse, which resets the timer (PMTMR).
The external synchronization feature can be enabled or disabled with the SYNCEN bit
(PTCON<7>). The pulse-width of the external synchronization signal (SYNCIx) must be more
than the period of the post-scaled input clock to ensure reliable detection by the master time
base.
M
U
X
SYNCSRC
PMTMR
SEVTCMP
1:1
1:16
PTPER
SEVTPS
Reset
SYNCEN
SYNCI1
SYNCI2
SYNCOEN
SYNCO
Edge Detector
SYNCPOL
Special Event
Trigger to ADC
Synchronization Signal
PWM Clock
CMP
CMP
© 2010-2011 Microchip Technology Inc. DS70645C-page 14-35
Section 14. High-Speed PWM
High-Speed PWM
14
Example 14-6: Push-Pull PWM Mode – Independent Duty Cycle and Phase, Fixed Primary Period,
Edge-Aligned
Figure 14-8: Push-Pull PWM Mode – Independent Duty Cycle and Phase, Fixed Secondary Period,
Edge-Aligned
/* Set PWM Period on Primary Time Base */
PTPER = 1000;
/* Set Phase Shift */
PHASE1 = 0;
PHASE2 = 100;
PHASE3 = 200;
/* Set Duty Cycles */
PDC1 = 150;
PDC2 = 200;
PDC3 = 400;
/* Set Dead Time Values */
DTR1 = DTR2 = DTR3 = 25;
ALTDTR1 = ALTDTR2 = ALTDTR3 = 25;
/* Set PWM Mode to Push-Pull */
IOCON1 = IOCON2 = IOCON3 = 0xC800;
/* Set Primary Time Base, Edge-Aligned Mode and Independent Duty Cycles */
PWMCON1 = PWMCON2 = PWMCON3 = 0x0000;
/* Configure Faults */
FCLCON1 = FCLCON2 = FCLCON3 = 0x0003;
/* 1:1 Prescaler */
PTCON2 = 0x0000;
/* Enable PWM Module */
PTCON = 0x8000;
Where:
PHASEx Phase of PWMxH and PWMxL
PDCx Duty Cycle of PWMxH and PWMxL
STPER Period of PWMxH and PWMxL
DTRx Dead Time for PWMxH Rising Edge
ALTDTRx Dead Time for PWMxL Rising Edge
STPER
PHASE1 = 0
PHASE2
PHASE3
PDC1
PWM1H
PWM1L
PWM2H
PWM2L
PWM3H
PWM3L
Start of
PWM Cycle
PDC1
PDC2
PDC2
PDC3
PDC3
Complete
PWM1L Cycle
DTR1
ALTDTR1
ALTDTR2
DTR2
ALTDTR3
DTR3
© 2010-2011 Microchip Technology Inc. DS70645C-page 14-37
Section 14. High-Speed PWM
High-Speed PWM
14
Example 14-8: Push-Pull PWM Mode – Master Duty Cycle and Independent Phase, Fixed Primary Period,
Edge-Aligned
Figure 14-10: Push-Pull PWM Mode – Master Duty Cycle and Independent Phase, Fixed Secondary Period,
Edge-Aligned
/* Set PWM Period on Primary Time Base*/
PTPER = 1000;
/* Set Phase Shift */
PHASE1 = 0;
PHASE2 = 100;
PHASE3 = 200;
/* Set Duty Cycles */
MDC = 200;
/* Set Dead Time Values */
DTR1 = DTR2 = DTR3 = 25;
ALTDTR1 = ALTDTR2 = ALTDTR3 = 25;
/* Set PWM Mode to Push-Pull */
IOCON1 = IOCON2 = IOCON3 = 0xC800;
/* Set Primary Time Base, Edge-Aligned Mode and Master Duty Cycles */
PWMCON1 = PWMCON2 = PWMCON3 = 0x0100;
/* Configure Faults */
FCLCON1 = FCLCON2 = FCLCON3 = 0x0003;
/* 1:1 Prescaler */
PTCON2 = 0x0000;
/* Enable PWM Module */
PTCON = 0x8000;
Where:
PHASEx Phase of PWMxH and PWMxL
MDC Duty Cycle of PWMxH and PWMxL
STPER Period of PWMxH and PWMxL
DTRx Dead Time for PWMxH Rising Edge
ALTDTRx Dead Time for PWMxL Rising Edge
STPER
PHASE1 = 0
PHASE2
PHASE3
MDC
PWM1H
PWM1L
PWM2H
PWM2L
PWM3H
PWM3L
Start of
PWM Cycle
MDC
MDC
MDC
MDC
MDC
Complete
PWM1L Cycle
DTR1
ALTDTR1
ALTDTR2
DTR2
ALTDTR3
DTR3


Produktspezifikationen

Marke: Microchip
Kategorie: Nicht kategorisiert
Modell: dsPIC33EP32MC204

Brauchst du Hilfe?

Wenn Sie Hilfe mit Microchip dsPIC33EP32MC204 benötigen, stellen Sie unten eine Frage und andere Benutzer werden Ihnen antworten




Bedienungsanleitung Nicht kategorisiert Microchip

Bedienungsanleitung Nicht kategorisiert

Neueste Bedienungsanleitung für -Kategorien-